层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)。1842年Hochstetter首先从瑞典的片岩矿层中发现了天然水滑石矿;二十世纪初人们由于发现了LDH对氢加成反应具有催化作用而开始对其结构进行研究;1969年Allmann等人通过测定LDH单晶结构,首次确认了LDH的层状结构;二十世纪九十年代以后,随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化。
外文名:Layered Double Hydroxide,LDH
水滑石基本信息
水滑石结构特征
LDHs是由带正电荷的主体层板和层间阴离子通过非共价键的相互作用组装而成化合物,它的结构类似于水镁石Mg(OH)2,由MgO6八面体共用棱形成单元层。有以下几个很突出的特点:(1)主体层板的化学组成可调变;(2)层间客体阴离子的种类和数量可调变;(3)插层组装体的粒径尺寸和分布可调控
典型的LDHs化合物是镁铝碳酸根型水滑石:Mg6Al2(OH)16CO3·4H2O[4]。LDHs的结构非常类似于水镁石[Mg(OH)2],由MgO6八面体共用棱形成单元层,位于层上的Mg2+可在一定的范围内被Al3+同晶取代,使得层板带正电荷,层间有可交换的CO32-与层板上的正电荷平衡,使得LDHs的整体结构呈电中性。由于层板和层间阴离子通过氢键连接,使得LDHs层间阴离子具有可交换性。此外,在LDHs中存在层间水这些水分子可以在不破坏层状结构条件下除去。
水滑石性质
碱性
LDHs的层板由镁八面体和铝氧八面体组成。所以,具有较强的碱性[5]。不同的LDHs的碱性强弱与组成中二价金属氢氧化物的碱性强弱基本一致,但由于它一般具有很小的比表面积(约5—20m2/g),表观碱性较小,其较强的碱性往往在其煅烧产物LDO中表现出来。LDO一般具有较高的比表面积(约200—300m2/g)、三种强度不同的碱中心和不同的酸中心,其结构中间中心充分暴露,使其具有比LDH更强的碱性。
层间阴离子的可交换性
LDHs的结构特点使其层间阴离子可与各种阴离子,包括无机离子、有机离子、同种离子、杂多酸离子以及配位化合物的阴离子进行交换[6]。利用LDHs的这种性质可以调变层间阴离子的种类合成不同类型的LDHs,并赋予其不同的性质,从而得到一类具有不同功能的新材料。
热稳定性能
LDHs加热到一定温度发生分解,热分解过程包括脱层间水,脱碳酸根离子,层板羟基脱水等步骤。在空气中低于200℃时,仅失去层间水分,对其结构无影响,当加热到250~450℃时,失去更多的水分,同时有CO2生成,加热到450~500℃时,CO32-消失,完全转变为CO2,生成双金属复合氧化物(LDO)[7]。在加热过程中,LDHs的有序层状结构被破坏,表面积增加,孔容增加。当加热温度超过600℃时,则分解后形成的金属氧化物开始烧结,致使表面积降低,孔体积减小,通常形成尖晶石MgAl2O4和MgO。
记忆效应
在一定温度下将LDHs焙烧一定时间的样品(此时样品的状态通常是LDH中金属离子的复合氧化物)加入到含有某种阴离子的溶液介质中,其结构可以部分恢复到具有有序层状结构的LDHs。一般而言,焙烧温度在500℃以内,结构的恢复是可能的,以MgAl-LDHs为例,温度在500℃内的焙烧产物接触到水以后其结构可以部分恢复到具有有序层状结构的LDH;当焙烧温度在600℃以上时生成具有尖晶石结构的焙烧产物,则导致结构无法恢复。
组成和结构的可调控性
由于LDHs没有固定的化学组成,其主体层板的元素种类及组成比例、层间阴离子的种类及数量、二维孔道结构可以根据需要在宽范围调变,从而获得具有特殊结构和性能的材料。LDHs组成和结构的可调变性以及由此所导致的多功能性,使LDHs成为一类极具研究潜力和应用前景的新型材料。
阻燃性能
LDHs在受热时,其结构水合层板羟基及层间离子以水和CO2的形式脱出,起到降低燃烧气体浓度,阻隔O2的阻燃作用;LDHs的结构水,层板羟基以及层间离子在不同的温度内脱离层板,从而可在较低的范围内(200~800℃)释放阻燃物质。在阻燃过程中,吸热量大,有利于降低燃烧时产生的高温
[8-9],可以作为无卤高抑烟阻燃剂,广泛应用于塑料、橡胶、涂料等领域 。
红外吸收性能
LDHs在1370cm-1附近出现层间CO32-的强特征吸收峰,在1000~400cm-1范围有层板上M-O键及层间阴离子的特征吸收峰,并且其红外吸收范围可以通过调变组成加以改变[10-11] 。、
催化性
将催化活性物种插入水滑石层间,以水滑石为前体,通过焙烧可制备高分散复合金属氧化物型催化剂,一般具有过渡金属含量高活性位分布均匀晶粒小比表面积大可以抑制烧结良好的稳定性等特点,从而表现出优异的催化性能,在催化剂或催化剂载体等领域得到了广泛应用
客服中心